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Abstract—The paper calls for further innovations in the field 
of Swarm Intelligence, and presents an idea of using virtual 
flock(s) in a virtual room as a controller. Then, to demonstrate 
the viability of the idea, a working prototype is constructed 
where the controller is used to guide a "creature" through a 
nontrivial corridor. 

I. INTRODUCTION 
WARM Intelligence (SI) is a branch of Artificial Intelli-
gence and / or Artificial Life where the main source of 
inspiration is the behavior of flocks of birds, swarms of 

insects, shoals of fish, herds of animals. One research direc-
tion of SI has the goal of making artificial objects behave as 
a swarm. Examples of this direction are swarms of cooperat-
ing robots, and animated flocks of birds or herds of animals 
in computer games and movies. Another direction of SI has 
a more abstract approach: using an artificial swarm as a 
problem solver, without trying to implement the swarm in 
hardware or even without visualizing it on a screen (except 
maybe for debugging or educational purposes). The main 
examples of this direction are Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO). 

ACO, inspired by the behavior of ant colonies, is a sto-
chastic optimization algorithm where the optimization prob-
lem is transformed into the problem of finding the best path 
on a weighed graph, and a set of software agents incremen-
tally builds solutions by moving on this graph [1]. 

In PSO, a swarm of virtual particles is moving around in 
the search space, cooperatively trying to find the point(s) 
where the function being optimized (fitness function) has 
most suitable values (as defined by given optimization prob-
lem). 

Both ACO and PSO are also applicable in dynamically 
changing situations. In case of ACO, the typical application 
example is routing and load balancing in changing networks 
(see, e.g., [2]). The practical use of dynamical PSO's is ap-
parently less common, but at least the theoretical work is in 
progress ([3] and [4] being just a few of the many exam-
ples). 

However, there seems to be a lot of untapped potential in 
this more abstract direction of SI. Apart from ACO and 
PSO, there are not many remarkable developments, and even 
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these two concentrate mostly on industrial optimization 
problems (surely there are several other well-established 
related methods like Evolutionary Algorithms and Stochastic 
Diffusion Search [5], but these do not draw inspiration di-
rectly from typical spatially moving swarms and thus would 
be more accurately described as population-based methods). 
While it is perfectly reasonable to put a considerable effort 
on making ACO and PSO increasingly useful in highly prac-
tical situations, it might be a good idea to simultaneously 
keep the more open-ended innovation process more active. 
To facilitate and inspire that process, this paper proposes a 
(to my knowledge) new method of Swarm Intelligence. 

II. THE GENERAL IDEA 
The idea is to take an artificial swarm, put it in a virtual 

room, create input and output mappings of necessary para-
meters to and from the room, and use this system as a con-
troller (Fig. 1). 

First of all, there has to be a swarm. In principle, it can be 
almost any kind of swarm. But to get started, we can use the 
quite well-known basic rules of boids from [6]. Each boid 
(bird-oid) has three simple simultaneously active steering 
behaviors: 
1) separation – boid steers clear from local flockmates to 

avoid crowding; 
2) alignment – boid steers towards the average heading of 

local flockmates trying to maintain the general moving 
direction of the flock; 

3) cohesion – boid steers to move towards the center of the 
local subflock (consisting of boid's local flockmates) to 
avoid leaving the flock. 

 
Secondly, the swarm is put into a closed virtual room. The 

boids can be made to actively avoid the walls, or just to 
bounce back from, or slam into, them. For simplicity, we 
take a circular room. 

For this system to act as a controller (not necessarily in an 
industrial sense), it has to be supplied with input and output 
channels. Thus, the third step is creating the means of inter-
facing with the flock. 

The boids should be given some sensors, say "light sen-
sors" (being a virtual flock it really does not matter how the 
sensors are called, but currently this naming makes it easier 
for a human to get hold of the idea). In the room there 
should be sources of information corresponding to the sen-
sors ("lights" in this case). Some additional behaviors are 
then added to boids, so that they will react to the sensed in-
formation. 

The input signals to the controller are mapped to informa-
tion sources in the virtual room. For example the input sig-
nals can affect the position, intensity, color, etc. of the 
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"lights". Outputs of the controller are formed by monitoring 
the parameters of the flock – the position and speed of flock 
center, flock density, etc. – and combining / processing these 
parameters to match the requirements of the controlled ob-
ject. 

To make the point clearer, here is a concrete simple ex-
ample of a possible use of the system, in the form of a 
thought experiment (i.e., not implemented). Imagine we 
have a virtual creature in a computer game, who has to avoid 
other "bad" creatures (as shown on Fig. 1). As a "brain" our 
creature has the previously described system of a flock in 
room (hence the name of this project: FlockHeadz). The 
creature is able to detect the direction and distance (or mali-
ciousness) of enemies, and this information is relayed to the 
controller where each enemy is represented as a light source 
on the wall of the virtual room. The closer or more malicious 
the "bad" creature, the more intensive the light. Direction of 
the enemy, relative to our creature's heading, is mapped di-
rectly to the direction of light source from room center (e.g., 
an enemy who is in front of the creature is represented by a 
light source on the Northern wall of the room; an enemy 
behind the creature by a light source on the Southern wall, 
etc.). Boids in the flock are added a rule which makes them 
move away from light sources with a speed depending on 
light intensity. The output of the controller is derived from 
flock center's position relative to room center. E.g., if the 
flock is in the Northern / upper part of the virtual room, our 
creature will move forward with a speed depending on how 
far the flock is from the room center. If the flock is in the 
Eastern / right part of the virtual room, our creature will 
move sidewise right (or maybe turn right), etc. 

While the given example might be helpful for understand-
ing the basic idea of FlockHeadz, it does not seem to be very 
practical in its extreme simplicity. Consider the case where a 
few enemies have surrounded our creature. The flock will 
most likely move to the center of the virtual room, and our 
creature will stay still, without trying to escape (though, in 
certain cases it might even be a good strategy). A notably 
more serious problem is: boids in the controller are explicitly 
designed to behave analogously to the expected behavior of 
controlled creature – they just move away from light sources 
that represent enemies. It raises the question: why not apply 
the same rules directly to our creature and avoid the compu-
tational cost and complexity of the flock-based controller? In 
such a simple example the use of the flock-based controller 
might indeed not make much difference, maybe only adds a 
small element of unexpectedness and suprise (from the 
viewpoint of human observer) to the movement of the crea-
ture. This is not to play down the value of unexpectedness – 
unlike in common engineering, surprises have a very high 
value in Artificial Life and Artificial Intelligence – it is just 
that the magnitude of surprise here is somewhat small, espe-
cially compared to the added development and computation-
al costs. 

Getting more interesting, more complex and more useful 
behavior requires, in most cases, fine-tuning the myriad of 
parameters already implicitly present in given system, 
choosing suitable rules for boids, suitable mappings for con-
troller inputs and outputs, etc. This is a task not suitable for 

human designers. Thus a reasonable approach would be to 
construct a test environment relevant to the problem in hand 
(or, if possible and reasonable, use the "real" problem envi-
ronment itself), and apply artificial evolution to the system. 
In the aforementioned simplistic example, the fitness of the 
creature could be defined as surviving time on a flat surface 
populated with enemies, or the speed of getting from one 
point to another on that surface without being eliminated in 
between. 

More complex tasks may require the addition of new fea-
tures to the controller. Room shape can be made more com-
plex, and a third dimension (or even more) can be added. 
Room can be made to contain a (possibly nonhomogeneous) 
internal environment that affects boids' capabilities. There 
could be several species of boids, each species equipped 
with different sensors and possibly being affected by the 
movements of other species. Also, the possible ways of how 
controller's inputs are made to affect boids are nearly end-
less, from directly influencing boids' parameters, to all kinds 
of mappings of inputs to information sources in room that 
are sensed by boids through advanced sensors. But of course 
the addition of new features causes huge expansion of evolu-
tion's search space, which in many cases makes the finding 
of useful solutions a lot harder, and thus practical considera-
tions may suggest keeping the controller relatively simple. 

 
 
Fig. 1.  Simple flock-based control system for avoiding "enemies". In 
the upper right quarter is shown a situation where our controllable 
creature (facing upwards) is confronted by two bad creatures (facing 
downwards). Big circle on the left is a virtual room that acts as the 
"brain" of our creature (i.e., it can be thought of as situated inside the 
creature's head, not next to it as shown here for visualization purpos-
es). Inside the room there is a flock of boids (small triangles). At the 
walls of the room there are two "lights" (circles) that represent ene-
mies. Boids move away from lights (big sketched arrow downwards). 
When flock reaches bottom area of the circle, the controlled creature 
will start moving backwards (four smaller grey arrows represent the 
mapping between flock position and control signal sent to the crea-
ture). 



 
 

 

III. A SIMPLE PROTOTYPE 
To test whether the idea of using a flock in a virtual room 

as a controller is at all feasible, I made a simple prototype. 
As deciding whether a creature is successful in avoiding 
enemies is somewhat arbitrary, the test case is taken to be 
the passage of a nontrivial corridor, where success is quite 
clearly defined as getting from one end of the corridor to 
another as fast as possible. Please note, however, that the 
main contribution of this paper is the idea of FlockHeadz 
and, more generally, the facilitation of innovation in the field 
of Swarm Intelligence. The controller presented in this sec-
tion is only a demonstration – a very primitive instantiation 
of the much more general and complex FlockHeadz idea – 
and as such does not even attempt to match the performance 
of proper navigational algorithms, neither in accuracy nor in 
applicability to previously unencountered environments. 
Developing practically useful controllers that behave well in 
large sets of diverse environments is a direction to pursue in 
future research. 

The corridor to be passed is shown on Fig. 2. The "crea-
ture" (just a dot on the screen) starts from the lower central 
part and has to finally reach the far right end of the corridor. 
The creature is able to sense the closest points of each of 
corridor's wall (including those out of sight). This ability is 
obviously not realistic, but the test case is not intended to be 
a simulation of a real robot. Rather, it is an artificial object 
in an artificial environment, where it happens to have an 
easy access to a function that returns the positions of such 
points (because I happened to have at hand a fast software 
implementation of given ability, and developing a fast realis-
tic one, compatible with the used system, would have de-
layed the implementation of this prototype). However unrea-
listic, for our current purposes the test case is perfectly suit-
able, as it is not trivially solvable by a random controller. 

The prototype is implemented in Python programming 
language. For human input handling and visualization, pack-
ages pygame and PyOpenGL are used. Controller, controlla-
ble creature, and management console are all running as 
separate processes, communicating mostly by asynchronous 
message passing through Spread daemon (www.spread.org). 
The main motivation for using message passing was to allow 
the prototype to be later easily extended and distributed over 
several computers for larger evolution runs, and to make it 
easier to visualize controller and controllable system in sepa-
rate windows. However, for this simple test case the distri-
bution was not necessary – one computer provided enough 
computing power. Also, the separation of controller and con-
trollable system processes by asynchronous messaging 
makes system behavior dependent on nonessential variables 
like the relative running speed of the processes and the gen-
eral state of operating system environment (e.g., visualiza-
tion of the controller may be computationally more expen-
sive than visualization of the controlled system, thus switch-
ing on the visualization causes a larger slowdown of the con-
troller process compared to the slowdown of controllable 
system, which changes system behavior). Therefore in most 
cases it might be a good idea to avoid such separation. 

Visualization of the controller is shown and explained on 
Fig. 3. Input to the controller is the aforementioned closest 

 
 
Fig. 2. Traced path of the creature moving in a corridor during an 
average run with randomly parameterized flock-based controller. 

 
 
Fig. 3. Visualization of the flock-based controller. Triangles inside the 
room are boids. Black and grey dots around the circle are information 
sources that represent nearest points of every wall in the corridor, 
their intensity depending on how near those corridor points are (see 
Fig. 4). 

 
 
Fig. 4. Traced path of the creature moving in a corridor during a rela-
tively good run with well-evolved controller. Current position of the 
creature is in the rightmost end of the path, moving down next to a 
wall. The controller state of this moment is shown on Fig. 3. 



 
 

 

points of all walls, represented as "lights" near controller 
room's walls. Boids can, depending on their parameters, flee 
or chase the lights (currently all boids have same rules and 
parameter values, so the situation of some boids avoiding 
and some chasing the lights is currently not possible). Out-
put of the controller is derived from flock center's position 
(i.e., the average position of all boids) relative to controller 
room's center. This output is mapped into controlled crea-
ture's acceleration – the further North the flock is, the faster 
the creature accelerates towards North, etc. (if the creature 
was moving Southwards beforehand, then Northwards acce-
leration is synonymous with deceleration for a while). 

The main controller-related changeable parameters in giv-
en test case are: the number of boids; the neighborhood ra-
diuses around the boid for separation, alignment, and cohe-
sion rules (all three possibly different); the weights of sepa-
ration, alignment, and cohesion rules (how much each of 
them affects boid's movement; can be both positive and neg-
ative, the latter inversing the behavior, e.g. separation to 
cohesion or alignment to reverse-alignment); the weight of 
"light" avoidance rule (also either positive or negative); bo-
id's speed decay factor (basically similar to friction); and 
output scaling factor, i.e. how strong is the acceleration ap-
plied to controlled creature. 

First I tested how successful the creature is with control-
lers that have parameters randomly drawn from reasonable 
ranges (reasonable in the sense of "not too large to make the 
system totally dysfunctional, based on system designer's 
educated guesses"). This is kind of a null hypothesis test, to 
make sure the desired corridor passing behavior is not hu-
man-designed into the controller structure so that most pa-
rameter values would give expected behavior. The results 
demonstrated that creatures with randomly parameterized 
flock-based controllers tend to stay in the first segment(s) of 
the corridor for a long time, either crashing into walls and 
corners or wobbling around (Fig. 2). When parameters were 
hand-tuned, the system performed considerably better, in 
some cases even reaching the other end of the corridor. 
However, in most runs the creature still spent a lot of time 
moving back and forth in a few corridor segments. Thus, it is 
not trivial to find parameter values that would make the 
flock-based controller solve the test case efficiently. At the 
same time the acceptable solution regions in parameter space 
("acceptable" being vaguely defined as the situation where 
corridor is passed with relatively few backward movements) 
are not so small and sharp-edged as to render the test case 
unsuitable for given controller. 

Then I applied (a somewhat primitive form of) evolution. 
The fitness of a controller is calculated based on how far the 
creature is after a certain number of simulation steps (in 
terms of "corridor distance", not the "as the crow flies" dis-
tance, from starting point). If the creature reaches the other 
end of corridor before time limit, the simulation run is ter-
minated and extra score assigned depending on how much 
earlier the creature finished. To lessen fitness distortions by 
"lucky runs", each controller is tested three times and the 
scores are summed (each time the initial position of boids in 
controller room is different – they are placed there random-
ly). 

Controllers are tested one at a time, and best 20 are kept 
as the breeding pool. First 20 controllers are parameterized 
randomly (within predefined reasonable ranges). After that, 
there is 0.1 probability of generating random controller, and 
0.9 probability of crossing existing parents, who are drawn 
from the pool of 20 best with probability proportional to 
fitness (i.e., more fit are selected more often). Crossing pro-
cedure goes through each changeable parameter and either, 
with probability 0.1, generates a random value, or, with 
probability 0.9, takes the value of that parameter from one of 
the parents (both parents having equal probability of being 
the source of that parameter value). 

Fig. 5 shows the progress of evolution. Although the used 
evolution process is quite primitive, it is good enough to 
generate increasingly fit solutions. 

Even though the initial null hypothesis tests raised suspi-

 
 
Fig. 6. Traced paths of the creature moving in a corridor during some 
good runs with a well-evolved controller. Both have the same control-
ler, but initial positions of boids in the controller room are different. 

 
 
Fig. 5. Fitness scores of each controller in the (primitive) evolution 
process. The score is given on y-axis (arbitrary units; see text for 
explanation about what the fitness represents), and x-axis is just the 
number of each controller (they are generated and tested one at a time, 
and enumerated in increasing order). 



 
 

 

cions that the proposed flock-based controller may not live 
up to the hopes, the more fit solutions found by evolution 
proved the doubts wrong. There exist parameter values 
which make the controller work reasonably well, as seen in 
Fig. 6. Detailed description and analysis of the parameter 
values for this test case is out of the scope of current paper, 
but at least the number of boids deserves some attention 
here. Namely, although in found good controllers the num-
ber of boids tended to be above 10, a question may arise 
about whether really a swarm is needed, or maybe one boid 
would be enough for such a simple prototype. To find an 
answer, I forced the number of boids to be fixed to one in 
the evolution process. When running the evolution with such 
a constraint, it can be observed (Fig. 7) that the fitness of the 
controllers stays quite low. It may well be possible that there 
does exist a suitable combination of parameter values for the 
single boid controller to be successful, and that these values 
are not found within reasonable running time because used 
evolution algorithm is too primitive. But even if this is the 
case, it is clear that those values are considerably harder to 
find than good values for a multiple boid controller. In addi-
tion, it is highly unlikely that for more complex tasks one 
boid would ever suffice (as hypothesized earlier, even one 
species of boids could be not enough in more difficult cas-
es). 

IV. POSSIBLE APPLICATIONS 
Even with the best found multi-boid controller, the paths 

of the creature through corridor are definitely not the short-
est possible. Therefore, industrial control engineering may 
consider the flock-based controller not particularly useful, at 
least for such simpler tasks. However, the movements of the 
creature are interesting to look at (if not for everyone, then at 
least for people with ALife background) – it may take ob-
serving tens of passes through the same corridor with the 
same controller (but with different initial positions of boids, 
which alters the whole route of the creature) before boredom 
sets in. I consider it a good, though not necessarily scientific, 
sign of high enough potential of the proposed concept for 
ALife and suggest further testing and development of the 
idea. 

While not directly applicable to serious problems at this 
stage of development, the proposed idea has already several 
possible uses. First of all, it serves as an inspiration calling 
for bolder explorations in the field of Swarm Intelligence. 
Secondly, it can be used as a visually appealing and relative-
ly easily understandable illustration of SI in talks for the 
general public (which is not to say anything is wrong with 
illustrative applications currently in use, it is just that having 
a larger base of demonstrations makes it easier to pick suita-
ble presentation tools for specific audiences). Thirdly, it 
could be used in computer games for generating somewhat 
lifelike and unexpected behavior. 

More practical uses of flock-based control can certainly 
be found after further research. 

 

V. CONCLUSION 
There is plenty of room for innovations in the field of 

Swarm Intelligence. The proposed FlockHeadz concept is 
just a small sidestep from the main flourishing paths of SI, 
but hopefully it inspires further such steps, while also prov-
ing to be useful itself in a few specific applications. 
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Fig. 7. Fitness scores of each controller in the (primitive) evolution 
process when the number of boids is fixed to one. Axes same as in 
Fig. 5. 


