
Lints, T. (2008). FlockHeadz: Virtual flock in a room used as a controller. In IEEE Swarm
Intelligence Symposium, 2008. SIS 2008. IEEE. 5 pages.

T. Lints, "FlockHeadz: Virtual flock in a room used as a controller," in IEEE Swarm
Intelligence Symposium, 2008. SIS 2008, IEEE, 2008. 5 pages.

@inproceedings{Lints08_Flock,
 author = {Taivo Lints},
 title = {Flock{H}eadz: Virtual Flock in a Room Used as a
Controller},
 year = {2008},
 booktitle = {IEEE Swarm Intelligence Symposium, 2008. SIS
2008},
 publisher = {IEEE},
 note = {5 pages}
}

2008 IEEE Swarm Intelligence Symposium
St. Louis MO USA, September 21-23, 2008

978-1-4244-2705-5/08/$25.00 ©2008 IEEE

Abstract—The paper calls for further innovations in the field
of Swarm Intelligence, and presents an idea of using virtual
flock(s) in a virtual room as a controller. Then, to demonstrate
the viability of the idea, a working prototype is constructed
where the controller is used to guide a "creature" through a
nontrivial corridor.

I. INTRODUCTION
WARM Intelligence (SI) is a branch of Artificial Intelli-
gence and / or Artificial Life where the main source of
inspiration is the behavior of flocks of birds, swarms of

insects, shoals of fish, herds of animals. One research direc-
tion of SI has the goal of making artificial objects behave as
a swarm. Examples of this direction are swarms of cooperat-
ing robots, and animated flocks of birds or herds of animals
in computer games and movies. Another direction of SI has
a more abstract approach: using an artificial swarm as a
problem solver, without trying to implement the swarm in
hardware or even without visualizing it on a screen (except
maybe for debugging or educational purposes). The main
examples of this direction are Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO).

ACO, inspired by the behavior of ant colonies, is a sto-
chastic optimization algorithm where the optimization prob-
lem is transformed into the problem of finding the best path
on a weighed graph, and a set of software agents incremen-
tally builds solutions by moving on this graph [1].

In PSO, a swarm of virtual particles is moving around in
the search space, cooperatively trying to find the point(s)
where the function being optimized (fitness function) has
most suitable values (as defined by given optimization prob-
lem).

Both ACO and PSO are also applicable in dynamically
changing situations. In case of ACO, the typical application
example is routing and load balancing in changing networks
(see, e.g., [2]). The practical use of dynamical PSO's is ap-
parently less common, but at least the theoretical work is in
progress ([3] and [4] being just a few of the many exam-
ples).

However, there seems to be a lot of untapped potential in
this more abstract direction of SI. Apart from ACO and
PSO, there are not many remarkable developments, and even

Manuscript received May 11, 2008. This work was supported in part by

Research Laboratory for Proactive Technologies in Tallinn University of
Technology, Department of Computer Control in Tallinn University of
Technology, Estonian Information Technology Foundation, Estonian Doc-
toral School in ICT, Estonian Ministry of Education and Research (grants
SF0142509s03 and SF0140113As08), and Estonian Science Foundation
(grant ETF6182).

Taivo Lints is with the Research Laboratory for Proactive Technologies,
Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
(phone: +372 56 625 777; fax: +372 6202 101; e-mail: taivo@taivo.net).

these two concentrate mostly on industrial optimization
problems (surely there are several other well-established
related methods like Evolutionary Algorithms and Stochastic
Diffusion Search [5], but these do not draw inspiration di-
rectly from typical spatially moving swarms and thus would
be more accurately described as population-based methods).
While it is perfectly reasonable to put a considerable effort
on making ACO and PSO increasingly useful in highly prac-
tical situations, it might be a good idea to simultaneously
keep the more open-ended innovation process more active.
To facilitate and inspire that process, this paper proposes a
(to my knowledge) new method of Swarm Intelligence.

II. THE GENERAL IDEA
The idea is to take an artificial swarm, put it in a virtual

room, create input and output mappings of necessary para-
meters to and from the room, and use this system as a con-
troller (Fig. 1).

First of all, there has to be a swarm. In principle, it can be
almost any kind of swarm. But to get started, we can use the
quite well-known basic rules of boids from [6]. Each boid
(bird-oid) has three simple simultaneously active steering
behaviors:
1) separation – boid steers clear from local flockmates to

avoid crowding;
2) alignment – boid steers towards the average heading of

local flockmates trying to maintain the general moving
direction of the flock;

3) cohesion – boid steers to move towards the center of the
local subflock (consisting of boid's local flockmates) to
avoid leaving the flock.

Secondly, the swarm is put into a closed virtual room. The

boids can be made to actively avoid the walls, or just to
bounce back from, or slam into, them. For simplicity, we
take a circular room.

For this system to act as a controller (not necessarily in an
industrial sense), it has to be supplied with input and output
channels. Thus, the third step is creating the means of inter-
facing with the flock.

The boids should be given some sensors, say "light sen-
sors" (being a virtual flock it really does not matter how the
sensors are called, but currently this naming makes it easier
for a human to get hold of the idea). In the room there
should be sources of information corresponding to the sen-
sors ("lights" in this case). Some additional behaviors are
then added to boids, so that they will react to the sensed in-
formation.

The input signals to the controller are mapped to informa-
tion sources in the virtual room. For example the input sig-
nals can affect the position, intensity, color, etc. of the

FlockHeadz: Virtual Flock in a Room Used as a Controller
Taivo Lints

S

"lights". Outputs of the controller are formed by monitoring
the parameters of the flock – the position and speed of flock
center, flock density, etc. – and combining / processing these
parameters to match the requirements of the controlled ob-
ject.

To make the point clearer, here is a concrete simple ex-
ample of a possible use of the system, in the form of a
thought experiment (i.e., not implemented). Imagine we
have a virtual creature in a computer game, who has to avoid
other "bad" creatures (as shown on Fig. 1). As a "brain" our
creature has the previously described system of a flock in
room (hence the name of this project: FlockHeadz). The
creature is able to detect the direction and distance (or mali-
ciousness) of enemies, and this information is relayed to the
controller where each enemy is represented as a light source
on the wall of the virtual room. The closer or more malicious
the "bad" creature, the more intensive the light. Direction of
the enemy, relative to our creature's heading, is mapped di-
rectly to the direction of light source from room center (e.g.,
an enemy who is in front of the creature is represented by a
light source on the Northern wall of the room; an enemy
behind the creature by a light source on the Southern wall,
etc.). Boids in the flock are added a rule which makes them
move away from light sources with a speed depending on
light intensity. The output of the controller is derived from
flock center's position relative to room center. E.g., if the
flock is in the Northern / upper part of the virtual room, our
creature will move forward with a speed depending on how
far the flock is from the room center. If the flock is in the
Eastern / right part of the virtual room, our creature will
move sidewise right (or maybe turn right), etc.

While the given example might be helpful for understand-
ing the basic idea of FlockHeadz, it does not seem to be very
practical in its extreme simplicity. Consider the case where a
few enemies have surrounded our creature. The flock will
most likely move to the center of the virtual room, and our
creature will stay still, without trying to escape (though, in
certain cases it might even be a good strategy). A notably
more serious problem is: boids in the controller are explicitly
designed to behave analogously to the expected behavior of
controlled creature – they just move away from light sources
that represent enemies. It raises the question: why not apply
the same rules directly to our creature and avoid the compu-
tational cost and complexity of the flock-based controller? In
such a simple example the use of the flock-based controller
might indeed not make much difference, maybe only adds a
small element of unexpectedness and suprise (from the
viewpoint of human observer) to the movement of the crea-
ture. This is not to play down the value of unexpectedness –
unlike in common engineering, surprises have a very high
value in Artificial Life and Artificial Intelligence – it is just
that the magnitude of surprise here is somewhat small, espe-
cially compared to the added development and computation-
al costs.

Getting more interesting, more complex and more useful
behavior requires, in most cases, fine-tuning the myriad of
parameters already implicitly present in given system,
choosing suitable rules for boids, suitable mappings for con-
troller inputs and outputs, etc. This is a task not suitable for

human designers. Thus a reasonable approach would be to
construct a test environment relevant to the problem in hand
(or, if possible and reasonable, use the "real" problem envi-
ronment itself), and apply artificial evolution to the system.
In the aforementioned simplistic example, the fitness of the
creature could be defined as surviving time on a flat surface
populated with enemies, or the speed of getting from one
point to another on that surface without being eliminated in
between.

More complex tasks may require the addition of new fea-
tures to the controller. Room shape can be made more com-
plex, and a third dimension (or even more) can be added.
Room can be made to contain a (possibly nonhomogeneous)
internal environment that affects boids' capabilities. There
could be several species of boids, each species equipped
with different sensors and possibly being affected by the
movements of other species. Also, the possible ways of how
controller's inputs are made to affect boids are nearly end-
less, from directly influencing boids' parameters, to all kinds
of mappings of inputs to information sources in room that
are sensed by boids through advanced sensors. But of course
the addition of new features causes huge expansion of evolu-
tion's search space, which in many cases makes the finding
of useful solutions a lot harder, and thus practical considera-
tions may suggest keeping the controller relatively simple.

Fig. 1. Simple flock-based control system for avoiding "enemies". In
the upper right quarter is shown a situation where our controllable
creature (facing upwards) is confronted by two bad creatures (facing
downwards). Big circle on the left is a virtual room that acts as the
"brain" of our creature (i.e., it can be thought of as situated inside the
creature's head, not next to it as shown here for visualization purpos-
es). Inside the room there is a flock of boids (small triangles). At the
walls of the room there are two "lights" (circles) that represent ene-
mies. Boids move away from lights (big sketched arrow downwards).
When flock reaches bottom area of the circle, the controlled creature
will start moving backwards (four smaller grey arrows represent the
mapping between flock position and control signal sent to the crea-
ture).

III. A SIMPLE PROTOTYPE
To test whether the idea of using a flock in a virtual room

as a controller is at all feasible, I made a simple prototype.
As deciding whether a creature is successful in avoiding
enemies is somewhat arbitrary, the test case is taken to be
the passage of a nontrivial corridor, where success is quite
clearly defined as getting from one end of the corridor to
another as fast as possible. Please note, however, that the
main contribution of this paper is the idea of FlockHeadz
and, more generally, the facilitation of innovation in the field
of Swarm Intelligence. The controller presented in this sec-
tion is only a demonstration – a very primitive instantiation
of the much more general and complex FlockHeadz idea –
and as such does not even attempt to match the performance
of proper navigational algorithms, neither in accuracy nor in
applicability to previously unencountered environments.
Developing practically useful controllers that behave well in
large sets of diverse environments is a direction to pursue in
future research.

The corridor to be passed is shown on Fig. 2. The "crea-
ture" (just a dot on the screen) starts from the lower central
part and has to finally reach the far right end of the corridor.
The creature is able to sense the closest points of each of
corridor's wall (including those out of sight). This ability is
obviously not realistic, but the test case is not intended to be
a simulation of a real robot. Rather, it is an artificial object
in an artificial environment, where it happens to have an
easy access to a function that returns the positions of such
points (because I happened to have at hand a fast software
implementation of given ability, and developing a fast realis-
tic one, compatible with the used system, would have de-
layed the implementation of this prototype). However unrea-
listic, for our current purposes the test case is perfectly suit-
able, as it is not trivially solvable by a random controller.

The prototype is implemented in Python programming
language. For human input handling and visualization, pack-
ages pygame and PyOpenGL are used. Controller, controlla-
ble creature, and management console are all running as
separate processes, communicating mostly by asynchronous
message passing through Spread daemon (www.spread.org).
The main motivation for using message passing was to allow
the prototype to be later easily extended and distributed over
several computers for larger evolution runs, and to make it
easier to visualize controller and controllable system in sepa-
rate windows. However, for this simple test case the distri-
bution was not necessary – one computer provided enough
computing power. Also, the separation of controller and con-
trollable system processes by asynchronous messaging
makes system behavior dependent on nonessential variables
like the relative running speed of the processes and the gen-
eral state of operating system environment (e.g., visualiza-
tion of the controller may be computationally more expen-
sive than visualization of the controlled system, thus switch-
ing on the visualization causes a larger slowdown of the con-
troller process compared to the slowdown of controllable
system, which changes system behavior). Therefore in most
cases it might be a good idea to avoid such separation.

Visualization of the controller is shown and explained on
Fig. 3. Input to the controller is the aforementioned closest

Fig. 2. Traced path of the creature moving in a corridor during an
average run with randomly parameterized flock-based controller.

Fig. 3. Visualization of the flock-based controller. Triangles inside the
room are boids. Black and grey dots around the circle are information
sources that represent nearest points of every wall in the corridor,
their intensity depending on how near those corridor points are (see
Fig. 4).

Fig. 4. Traced path of the creature moving in a corridor during a rela-
tively good run with well-evolved controller. Current position of the
creature is in the rightmost end of the path, moving down next to a
wall. The controller state of this moment is shown on Fig. 3.

points of all walls, represented as "lights" near controller
room's walls. Boids can, depending on their parameters, flee
or chase the lights (currently all boids have same rules and
parameter values, so the situation of some boids avoiding
and some chasing the lights is currently not possible). Out-
put of the controller is derived from flock center's position
(i.e., the average position of all boids) relative to controller
room's center. This output is mapped into controlled crea-
ture's acceleration – the further North the flock is, the faster
the creature accelerates towards North, etc. (if the creature
was moving Southwards beforehand, then Northwards acce-
leration is synonymous with deceleration for a while).

The main controller-related changeable parameters in giv-
en test case are: the number of boids; the neighborhood ra-
diuses around the boid for separation, alignment, and cohe-
sion rules (all three possibly different); the weights of sepa-
ration, alignment, and cohesion rules (how much each of
them affects boid's movement; can be both positive and neg-
ative, the latter inversing the behavior, e.g. separation to
cohesion or alignment to reverse-alignment); the weight of
"light" avoidance rule (also either positive or negative); bo-
id's speed decay factor (basically similar to friction); and
output scaling factor, i.e. how strong is the acceleration ap-
plied to controlled creature.

First I tested how successful the creature is with control-
lers that have parameters randomly drawn from reasonable
ranges (reasonable in the sense of "not too large to make the
system totally dysfunctional, based on system designer's
educated guesses"). This is kind of a null hypothesis test, to
make sure the desired corridor passing behavior is not hu-
man-designed into the controller structure so that most pa-
rameter values would give expected behavior. The results
demonstrated that creatures with randomly parameterized
flock-based controllers tend to stay in the first segment(s) of
the corridor for a long time, either crashing into walls and
corners or wobbling around (Fig. 2). When parameters were
hand-tuned, the system performed considerably better, in
some cases even reaching the other end of the corridor.
However, in most runs the creature still spent a lot of time
moving back and forth in a few corridor segments. Thus, it is
not trivial to find parameter values that would make the
flock-based controller solve the test case efficiently. At the
same time the acceptable solution regions in parameter space
("acceptable" being vaguely defined as the situation where
corridor is passed with relatively few backward movements)
are not so small and sharp-edged as to render the test case
unsuitable for given controller.

Then I applied (a somewhat primitive form of) evolution.
The fitness of a controller is calculated based on how far the
creature is after a certain number of simulation steps (in
terms of "corridor distance", not the "as the crow flies" dis-
tance, from starting point). If the creature reaches the other
end of corridor before time limit, the simulation run is ter-
minated and extra score assigned depending on how much
earlier the creature finished. To lessen fitness distortions by
"lucky runs", each controller is tested three times and the
scores are summed (each time the initial position of boids in
controller room is different – they are placed there random-
ly).

Controllers are tested one at a time, and best 20 are kept
as the breeding pool. First 20 controllers are parameterized
randomly (within predefined reasonable ranges). After that,
there is 0.1 probability of generating random controller, and
0.9 probability of crossing existing parents, who are drawn
from the pool of 20 best with probability proportional to
fitness (i.e., more fit are selected more often). Crossing pro-
cedure goes through each changeable parameter and either,
with probability 0.1, generates a random value, or, with
probability 0.9, takes the value of that parameter from one of
the parents (both parents having equal probability of being
the source of that parameter value).

Fig. 5 shows the progress of evolution. Although the used
evolution process is quite primitive, it is good enough to
generate increasingly fit solutions.

Even though the initial null hypothesis tests raised suspi-

Fig. 6. Traced paths of the creature moving in a corridor during some
good runs with a well-evolved controller. Both have the same control-
ler, but initial positions of boids in the controller room are different.

Fig. 5. Fitness scores of each controller in the (primitive) evolution
process. The score is given on y-axis (arbitrary units; see text for
explanation about what the fitness represents), and x-axis is just the
number of each controller (they are generated and tested one at a time,
and enumerated in increasing order).

cions that the proposed flock-based controller may not live
up to the hopes, the more fit solutions found by evolution
proved the doubts wrong. There exist parameter values
which make the controller work reasonably well, as seen in
Fig. 6. Detailed description and analysis of the parameter
values for this test case is out of the scope of current paper,
but at least the number of boids deserves some attention
here. Namely, although in found good controllers the num-
ber of boids tended to be above 10, a question may arise
about whether really a swarm is needed, or maybe one boid
would be enough for such a simple prototype. To find an
answer, I forced the number of boids to be fixed to one in
the evolution process. When running the evolution with such
a constraint, it can be observed (Fig. 7) that the fitness of the
controllers stays quite low. It may well be possible that there
does exist a suitable combination of parameter values for the
single boid controller to be successful, and that these values
are not found within reasonable running time because used
evolution algorithm is too primitive. But even if this is the
case, it is clear that those values are considerably harder to
find than good values for a multiple boid controller. In addi-
tion, it is highly unlikely that for more complex tasks one
boid would ever suffice (as hypothesized earlier, even one
species of boids could be not enough in more difficult cas-
es).

IV. POSSIBLE APPLICATIONS
Even with the best found multi-boid controller, the paths

of the creature through corridor are definitely not the short-
est possible. Therefore, industrial control engineering may
consider the flock-based controller not particularly useful, at
least for such simpler tasks. However, the movements of the
creature are interesting to look at (if not for everyone, then at
least for people with ALife background) – it may take ob-
serving tens of passes through the same corridor with the
same controller (but with different initial positions of boids,
which alters the whole route of the creature) before boredom
sets in. I consider it a good, though not necessarily scientific,
sign of high enough potential of the proposed concept for
ALife and suggest further testing and development of the
idea.

While not directly applicable to serious problems at this
stage of development, the proposed idea has already several
possible uses. First of all, it serves as an inspiration calling
for bolder explorations in the field of Swarm Intelligence.
Secondly, it can be used as a visually appealing and relative-
ly easily understandable illustration of SI in talks for the
general public (which is not to say anything is wrong with
illustrative applications currently in use, it is just that having
a larger base of demonstrations makes it easier to pick suita-
ble presentation tools for specific audiences). Thirdly, it
could be used in computer games for generating somewhat
lifelike and unexpected behavior.

More practical uses of flock-based control can certainly
be found after further research.

V. CONCLUSION
There is plenty of room for innovations in the field of

Swarm Intelligence. The proposed FlockHeadz concept is
just a small sidestep from the main flourishing paths of SI,
but hopefully it inspires further such steps, while also prov-
ing to be useful itself in a few specific applications.

ACKNOWLEDGMENT
Thanks to Leo Mõtus for providing me the possibility to

do highly unconstrained research. Thanks to Roland Pihla-
kas, Oleg Davidyuk, René Michelsen, and the two anonym-
ous reviewers, for reading the first versions of this paper and
providing constructive criticism.

REFERENCES
[1] M. Dorigo, "Ant colony optimization," Scholarpedia, 2(3):1461, 2007.
[2] K. M. Sim and W. H. Sun, "Ant colony optimization for routing and

load-balancing: survey and new directions," IEEE Transactions on
Systems, Man and Cybernetics, Part A, 33(5):560–572, 2003.

[3] X. Hu and R. C. Eberhart, "Adaptive particle swarm optimization:
detection and response to dynamic systems," Proceedings of the 2002
Congress on Evolutionary Computation CEC’02, Vol. 2, pp. 1666–
1670, IEEE Computer Society, 2002.

[4] D. Parrott and X. Li, "A particle swarm model for tracking multiple
peaks in a dynamic environment using speciation," Congress on Evo-
lutionary Computation, CEC 2004, Vol. 1, pp. 98–103, IEEE Com-
puter Society, 2004.

[5] J. M. Bishop, "Stochastic diffusion search," Scholarpedia, 2(8):3101,
2007.

[6] C. W. Reynolds, "Flocks, herds, and schools: A distributed behavioral
model," Computer Graphics, 21(4):25–34, 1987.

Fig. 7. Fitness scores of each controller in the (primitive) evolution
process when the number of boids is fixed to one. Axes same as in
Fig. 5.

