
Riid, A., Preden, J., Pahtma, R., Serg, R., and Lints, T. (2009). Automatic code
generation for embedded systems from high-level models. Electronics and Electrical
Engineering, 95(7):3336.

A. Riid, J. Preden, R. Pahtma, R. Serg, and T. Lints, "Automatic code generation for
embedded systems from high-level models," Electronics and Electrical Engineering,
vol. 95, no. 7, pp. 3336, 2009.

@article{RiidEA09_CodeGen,
 author = {A. Riid and J. Preden and R. Pahtma and R. Serg
and T. Lints},
 title = {Automatic Code Generation for Embedded Systems from
High-Level Models},
 year = {2009},
 journal = {Electronics and Electrical Engineering},
 volume = {95},
 number = {7},
 pages = {33-36}
}

33

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2009. No. 7(95)

ELEKTRONIKA IR ELEKTROTECHNIKA

ELECTRONICS

T170
ELEKTRONIKA

Automatic Code Generation for Embedded Systems from High-Level
Models

A. Riid, J. Preden, R. Pahtma, R. Serg, T. Lints
Research Laboratory for Proactive Technologies, Department of Computer Control, Tallinn University of Technology,
Ehitajate tee 5, Tallinn 19086, Estonia, phone: +3726202108; e-mail: andri.riid@dcc.ttu.ee

Introduction

The article describes a case study of automatic code
generation for embedded systems from high-level models
using the Gene-Auto code generator developed within the
scope of the ITEA Gene-Auto project (ITEA05018).

Real-time embedded systems have been gaining an
increasingly important place both in industrial systems and
also in other software-intensive systems. These systems are
primarily dependent on microprocessors and software in
fulfilling the tasks set upon them. Different constraints are
set upon such systems depending on the application domain
while in most systems the computational power of the
system is limited, putting serious constraints on the
feasibility of certain control strategies. It is the case in very
many modern systems that the disciplines of system and
software engineering must improve to deal with increasing
complexity of system functionality as requirements for
higher integration of functions, increasing performance,
higher levels of autonomy and high level of dependability
(reliability, availability and safety) must be met.

It should be noted that the real-time embedded
systems have been becoming more and more complex over
time. For automotive systems this is due to several factors:
safety and reliability requirements, increasing legislative
constraints on pollution and on-board diagnostics, etc. For
most systems, designs for new systems are constrained by
expectations for reducing cost and time to market. Such
complexity gradually enters the systems development
phase, with ever increasing requirements and translates
directly into a growing number of software functions.

The objective of the Gene-Auto project was to
develop an efficient open source prototype for certified
code generator that is able to generate code from Matlab
Simulink and Stateflow models as no certified code
generator for this task is available at the moment. As
indicated in [3] an automatic code generation could
introduce major productivity improvements in automotive
software generation by the ability to have industrial

software code available on the target processor with a
reduced amount of development time. A certified code
generator can shorten the development cycle in areas where
the software must also carry a certification. A certified
code generator allows generating validated code from
models validated using desktop based established design
environments, which means that there is no requirement to
check the integrity and correctness of the generated
software code. The transformation from model to code is
proven to be correct by means of modern formal
verification techniques which are in line with developed
strategies [2]. Any change in system requirements can be
first integrated to the high-level model where also the
desired effect can be verified, after which code can be
generated from the model and integrated to the target
platform. Code generated from a high-level model has
several advantages over hand-written code, for example
code maintainability is improved - when enhancements or
defect fixes are made, the code is regenerated (and re-
optimized) from scratch [3]. Also code reuse is improved
as the lack of platform detail embedded in a design means
that cross-platform reuse of designs and tests are enabled
[3].

The generated code must have the characteristics of
professionally written hand code [4]. Naturally the
generated code integration to legacy code should be
seamless as not all the code will be auto generated. The
task of the team at the Laboratory for Proactive
Technologies at Tallinn University of Technology in the
Gene-Auto project was to develop test cases to be used for
verification and validation of the code generator. Two test
cases were developed during the project by our team, one
of which will be described in detail in the current article.

Workflow

The workflow for using the Gene-Auto code
generator does not change the workflow of modern
software development cycle much. A high-level model of

34

the system or a component of the system is developed in a
high-level modeling environment such as Matlab. After the
model has been verified in the modeling environment and
deemed suitable for deployment on an embedded system,
code is generated to match the high-level model. The steps
for the model evaluation may differ in various industries –
in some industries simulation is used as part of the model
verification and validation process while other steps are
also possible. Currently the code generation step used by
the industry in general is manual as the code generation
tools available are not certified and for this reason the use
of such tools is not feasible in areas where the software
must carry industry certification. The Gene-Auto code
generator removes that manual step as the code generator
itself can be certified using industry standard certification
procedures which means that once a high-level model has
passed the verification step, verified code can be generated
from that model using the Gene-Auto code generator.

Description of the test-case

The test case described in the current paper is a four-
wheeled mobile robot that is capable of positioning itself in
an indoor environment using an indoor positioning system.
The robot is equipped with several embedded computers
and the task of the robot is to move from an arbitrary start
position to a desired end position while avoiding obstacles.

Fig. 1. Mobile platform

In front the mobile platform is equipped with 2
SRF08 ultrasonic rangers for detecting obstacles in the
range of 3 – 600cm. In the center of the robot there is an
electronic (MEMS) compass CMP2X from Mindsensors
for determining the orientation of the robot. A Cricket
MCS41CA positioning system receiver from Crossbow
enables positioning of the robot. The complexity of sensor
interfaces and servomotor control is contained in the
Hardware Abstraction Layer (HAL), which allows for
generalized control algorithms to be applied on the mobile
platform with minimum or no modifications. HAL consists
of Atmel AVR based Robostix board from Gumstix and
corresponding firmware that interfaces with actuators and
sensors. The Robostix board provides PWM signal to
servos and I2C bus master service for ultrasonic rangers
and compass. The HAL allows for 4 speeds forward and 4

speeds backwards both for left and right side motors. This
configuration gives the mobile platform flexible
maneuvering abilities of the robot. The HAL is interfaced
to higher level hardware via a serial interface.

The higher-level control algorithms run on a Gumstix
Connex 400 board based on a 32bit Intel XScale processor
running custom Linux OS. This board is interfaced to HAL
and the positioning system node by serial interfaces. The
software code generated from high-level models is loaded
to this sub-system.

Description of the test-case Matlab model

Robot position is determined by three state variables

x, y and = [-90, 270], where the latter is the angle
between robot's onward direction and the x-axis (Fig. 2) in
an established coordinate system. The width and length of
the robot are denoted by w and l, respectively.

Fig. 2. Robot and its main variables

The problem is formulated as follows: the robot must

arrive from an arbitrary initial position (xi, yi, i) to the

predefined destination (xf, yf, f). The robot moves forward
with the speed that is determined by speeds (tangential
velocities) of front wheels, vL and vR. These two parameters
also provide the means for controlling the robot and our
task is to define appropriate profiles of vL and vR

throughout the control cycle.
For robot movement simulation, the following set of

equations (1) is implemented in MATLAB.

.sin
2

)(

,cos
2

)(

,
)(

11

11

1

t
LR

tt

t
LR

tt

LR
tt

t
vv

yy

t
vv

xx

t
w

vv

(1)

Implementation of the control task is based on the
ideas of [5], and is distributed between two units (Fig. 2).
The main component of the system is the fuzzy logic based
trajectory mapping unit (TMU) that specifies the optimal

robot angle (r) for the given point in input space
determined by its current coordinates x and y. Computation
of speeds vL and vR that would force the robot to take
desired orientation is carried out by a separate steering
block SB.

f

180

90

270

0

(xf, yf)
(x, y)

x

y

vL

vR

35

Fig. 3. Hierarchical control system

While the TMU used in [5] can be used without
modification for current application, the steering block in
[5], however, originally consisted only of a PD controller
because in this application the robot was controlled by a
steering angle of front wheels. For differential steering
control scheme in current application this is complemented
by a calibration block that computes appropriate vR and vL

based on from the PD controller output using the
following equations

.
22

,
22

max

maxmax

max

maxmax

vv
v

vv
v

L

R

(2)

Fig. 4. Contents of the steering block

Note that the maximum forward speed of the robot is
determined by vmax/2.

The resulting control module can be used for robot
control in backward driving mode in its current shape and

in forward driving mode if we correct r by 180 (the
reason is obvious) and multiply the SB outputs by –1. Its
performance was validated by simulations in MATLAB.

Code generation

The Gene-Auto code generator uses the Gene-Auto
modeling language to which all input models are
converted. The purpose of this language is to generalize the
common concepts found in the tools used for developing
safety critical embedded systems and provide them with
clean and rigorous semantics. The definition of the
intermediate language includes abstract syntax and
semantics, but also modeling and programming rules which
should ensure that the models are well formed [1]. From
the model representation in the intermediate language code
is generated for the target language, currently code can be
generated in C language. Currently two modeling
environments can be used to generate input models for the
Gene-Auto code generator – Matlab Simulink/Stateflow
and Scicos. In the case study the code was generated from
the controller part of the Matlab model. The code

generation is straightforward – the code generator is given
the Matlab model and code is generated from the model.
When a change in the model is made (whether because of
change of requirements or some other reason) the code can
be generated again and integrated to the existing code.

Generated code integration

Gene-Auto allows for very flexible interfaces of the
generated code. Interaction between platform specific code
and generated code can be performed either via global
variables defined as extern in generated code or via data
structures passed to functions in the generated code. The
generated code can be contained in one source file or
distributed into multiple files, based on the structure of the
source model. The structure of the generated code does not
influence the integration of the code, because the entry
point is in one file. The required header files are included
automatically for convenience. As a result, the higher-level
code to which the generated code is integrated only needs
to include one generated header file where the interface for
the generated code is defined. The generated and manually
written code must be compiled and linked. For our test case
GNU Make was used for automating the build process,
allowing an easy choice between different versions of
generated code, target hardware and component
configuration. There is obviously no need to change the top
level code when the generated code changes if the interface
remains constant and different versions of the generated
code are stored in different folders. Make options can then
be used to choose which version is compiled and linked
into the final executable or library. The compiled code was
run at the mobile platform and the behaviour of the
platform corresponded to the behaviour of the Matlab
model.

Code comparison between generated code and
manually written code

The generated code was compared to manually
written code with equivalent functionality. Various
parameters of the generated code and manually written
code were compared to determine the differences.

As the first step the code size was evaluated. As it can
be seen the code size of the generated code was greater
which is not that important given the fact that ROM is
generally cheap.

Table 1. Code size of “the control of a mobile robot” case study

Number of
files

Number of
statements

Number of
lines of code

Number of
functions

handwritten 28 789 1549 27
generated 10 1539 2320 5

Since the compiled code runs under the Linux
operating system the memory usage values were monitored
under the Linux operating system using the operating
system’s ps utility. Both memory usage values are for a
process that runs the test program used to evaluate the
generated code and the hand-written code. The test
program contains some wrappers that call the actual code

PD
calibr-
ation

r -
vL

SB

vR

- r
vR

+
ySB

x

TMU

vL

36

and evaluate the returned results. Since the test program
was identical in both cases (except for the code under
evaluation), any change in memory usage is a result of the
application code change.

Table 2. Memory usage of “the control of a mobile robot” case
study, in kB

Non-swapped
physical memory

Virtual
memory size

handwritten 1180 16 040
generated 1252 16 048

The CPU performance was analyzed by measuring the
execution time of the code over a 1000 executions of the
code. The values in the tables are execution time of the
code in nanoseconds.

Table 3. Execution times of “the control of a mobile robot” case
study, time in nanoseconds

Minimum Average Maximum
handwritten 2 933 3 517 26 959
generated 8 590 10 848 81 016

The traceability between model and code was
checked by reading the code and it was found to be
satisfactory. Since the structure of the code does not follow
the structure of the model the traceability is hindered.
However the comments in the generated code provide a
sufficient level of traceability between the model and the
code.
Concluding remarks

Code generation for safety-critical real-time
embedded systems is viable and important if we want to
cope with the complexities of modern systems. The case
study showed that while the generated code may be slightly
bigger it satisfies the requirements for numerical accuracy
and functionality.

Acknowledgements

The work presented in this paper was partially
supported by the ITEA project 05018 Gene-Auto, the
Estonian Science Foundation grants ETF6182, ETF6837
and the Estonian Ministry of Education research grant
SF0140113As08.

References

1. Toom A., Naks T., Pantel M., Gandriau M., Wati I.
GeneAuto: An Automatic Code Generator for a safe subset of
SimuLink/StateFlow // Dans: European Congress on
Embedded Real-Time Software (ERTS 2008). – Toulouse,
29-Jan-08–01-Feb-08. – Société des Ingénieurs de
l'Automobile (support électronique). – 2008.

2. Rugina A. E., Thomas D., Olive X., Veran G. Gene-Auto:
Automatic Software Code Generation for Real-Time
Embedded Systems // Data Systems In Aerospace
DASIA2008. – Spain 2008.

3. Weigert T., Weil F., van den Berg A., Dietz P., Marth K.
Automated Code Generation for Industrial-Strength Systems
// Computer Software and Applications COMPSAC '08. 32nd
Annual IEEE International Conference. – July 28, 2008 –
Aug. 1, 2008. – P. 464–472.

4. Toeppe S., Bostic D., Ranville S., Rzemien K. Automatic
code generation requirements for production automotive
powertrain applications // Computer Aided Control System
Design. Proceedings of the IEEE International Symposium. –
22–27 Aug., 1999. – P. 200–206.

5. Riid A., Pahhomov D. and Rüstern E. Car Navigation and
Collision Avoidance System with Fuzzy Logic // Proc. IEEE
International Conference on Fuzzy Systems. – Budapest,
2004. – Vol. 3. – P. 1443–1448.

Received 2009 04 27

A. Riid, J. Preden, R. Pahtma, R. Serg, T. Lints. Automatic Code Generation for Embedded Systems from High-Level Models //
Electronics and Electrical Engineering. – Kaunas: Technologija, 2009. – No. 7(95). – P. 33–36.

Software engineering methods have not been able to keep up with the complexities of modern real-time embedded systems.
Automatic code generation from high-level formal models removes the manual coding step, enabling faster and higher quality code
generation from system specification. A code generation case study involving a mobile robot control algorithm is described and verified
in MATLAB, performance and properties of the generated code are compared to hand-written code. Ill. 4, bibl. 5 (in English, summaries
in English, Russian and Lithuanian).

А. Рийд, Ю. Преден, Р. Пахтма, Р. Серг, Т. Линтс. Автоматическое генерирование кода для встроенных систем с
использованием модели высокого уровня // Электроника и электротехника. – Каунас: Технология, 2009. – № 7(95). – С.
33–36.

Описывается способ автоматического генерирования программного кода для обработки данных в реальном времени.
Предлагается алгоритм управления роботом с использованием MATLAB. Дано сравнение сгенерированного кода с кодом,
созданным программистом. Ил. 4, библ. 5 (на английском языке; рефераты на английском, русском и литовском яз.).

A. Riid, J. Preden, R. Pahtma, R. Serg, T. Lints. Automatinis įterptinėms sistemoms skirto kodo generavimas naudojant aukštojo
lygio modelius // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2009. – Nr. 7(95). – P. 33–36.

Klasikiniai programinės įrangos kūrimo metodai netinka modernioms sudėtingoms duomenis realiu laiku apdorojančioms
įterptinėms sistemoms kurti. Automatinis programinio kodo generavimas naudojant aukštojo lygmens formalizuotus modelius įgalina
sumažinti programuotojo darbo apimtį ir greičiau sugeneruoti sistemos specifikaciją atitinkantį kokybišką kodą. Aprašomas mobiliojo
roboto valdymo algoritmą įgyvendinančio kodo generavimas naudojant MATLAB terpę. Automatiškai generuojamas kodas lyginamas
su žmogaus rašytu programos tekstu. Il. 4, bibl. 5 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

