
Lints, T. (2009). Relation learning with bar charts. In IEEE Symposium on Intelligent
Agents, 2009. IA '09, pages 7783. IEEE.

T. Lints, "Relation learning with bar charts," in IEEE Symposium on Intelligent Agents,
2009. IA '09, pp. 7783, IEEE, 2009.

@inproceedings{Lints09_BarCharts,
 author = {Taivo Lints},
 title = {Relation Learning with Bar Charts},
 year = {2009},
 booktitle = {IEEE Symposium on Intelligent Agents, 2009. IA
'09},
 publisher = {IEEE},
 pages = {77-83}
}

Relation Learning with Bar Charts

Taivo Lints

Abstract— The paper reports on the work in progress on
developing a machine learning method that is inspired on how
a human operator might visually try to find relations between a
large number of incoming data streams originating from sensors
and controllable actuators. A large number of plot-like data
structures of various dimensions are periodically generated for
the combinations of given data streams and searched for regu-
larities. Controllable variables are manipulated in some random
or systematic way until the observed regularities allow for more
intelligent behavior (if required). Information about interesting
(as defined by the task at hand) relationships is extracted from
the data structures, and human-readable control rules for the
system are formed. For most nontrivial applications the method
can be computationally very expensive, but the potential for
parallelizability and for smart optimizations together with the
continual increase of capabilities of the off-the-shelf computers
suggest that the method will be feasible already in the nearest
future.

I. INTRODUCTION

LEARNING can be seen as a process of discovering
and remembering associations. As it is a typical way

of achieving intelligent behavior, learning is one of the core
topics of research in the field of Artificial Intelligence, having
a separate subdiscipline called Machine Learning devoted to
finding ways of achieving learning in technological systems,
mainly in computers. A large number of various algorithms
and techniques for machine learning have been proposed,
each of them having their share of advantages and disad-
vantages. However, achieving learning in machines is far
from being a solved problem with only minor technicalities
left to figure out. Rather, the field of Machine Learning is
wide open to new ideas and, not the least due to the quick
increase of performance of computers that keeps making
more and more approaches practical, sees a lot of ongoing
research activity. In the following paper, a learning method is
proposed that is computationally quite demanding, but with
some further work might already be practically usable with
current technology. The main target area of applications is
systems that interact with their surroundings but are not too
small to lack computing power. The idea is quite general,
though, and can be applied in other areas as well.

Taivo Lints is with the Research Laboratory for Proactive Technologies,
Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
(phone: +372 56 625 777; fax: +372 6202 101; e-mail: taivo@taivo.net).

This work was supported in part by Research Laboratory for Proactive
Technologies in Tallinn University of Technology, Department of Computer
Control in Tallinn University of Technology, Estonian Information Tech-
nology Foundation, Estonian Doctoral School in ICT, Estonian Ministry
of Education and Research (grant SF0140113As08), and Estonian Science
Foundation (grant ETF6182).

Manuscript received Nov 12, 2008.

II. DESCRIPTION OF THE IDEA

A. General Description

The research goal of current work is creating a machine
learning method that is:
• at all stages easily understandable for (and intervenable

by) a human observer,
• general enough to be applicable in different practical

areas without major reconfiguration,
• able to extract delayed effects (for example when a

lightbulb always lights up 10 seconds after button press),
• able to forget outdated knowledge,
• and suitable for a software-intensive hardware system

that has to learn to behave sensibly with minimal initial
knowledge about its sensors and actuators.

The approach taken is to look at learning as a process
of discovering and remembering associations, considering a
case of having a large number of incoming data streams
(from sensors) and controllable outputs (to actuators), and
thinking about how a human operator might behave so as to
learn how these data streams covary with each other and with
the controllable outputs. The behavior of the hypothetical
human is considered here on the level of explicit acts and
conscious reasoning, not on low neuronal level.

A common way of making sense of a big dataset is to rep-
resent it in some graphical way. When looking for relations
between two variables, the simplest thing to try would be
to take a two-dimensional graph, assign one variable to x-
axis, the other variable to y-axis, plot all the datapoints, and
examine the resulting graph visually for regularities. Given
enough datapoints it is relatively easy for a human to detect
from the plot the existence of some relationship between two
variables, except maybe in some particularly complicated
cases. Doing so for every possible pair of given variables
would thus enlighten us about most of the one argument
functions between them (though not necessarily suggest what
exactly those functions are). Finding functions of more than
one argument would generally require plotting in more than
two dimensions, which can become difficult to grasp visually,
unless some clever graphing methods are used.

As of scrutinizing the relationships between (unknown)
controls and sensors, the common way for a human operator
would be to play around with the controls and observe if that
has any effect on sensor values. Apart from the necessity to
behave proactively, the rest of the relation finding behavior
can be the same plotting procedure described in the previous
paragraph.

The machine learning method proposed in current work
is directly inspired by this simple and quite intuitive po-
tential human behavior. A large number of plot-like data

978-1-4244-2767-3/09/$25.00 ©2009 IEEE

structures of various dimensions are periodically generated
for the combinations of given data streams and observed
for regularities. Controllable variables are manipulated in
a random, or in some systematically scanning, way (so-
called motor babbling) until the observed regularities allow
for more intelligent behavior (if required). Information about
interesting (as defined by the task at hand) relationships
is extracted from the data structures and human-readable
control rules for the system are formed.

B. Related Work

As the proposed method is intentionally derived from
the common and intuitive way of human behavior during
data analysis, it cannot be novel on the general idea level.
However, I am not aware of anybody using online periodical
formation and processing of a large number of plot-like data
structures as a machine learning technique in the specific
way described in current work. It can in part be due to the
high computational cost of this method, which in the most
simplistic brute force approach would turn out to render
the method practically infeasible. However, given the ever
faster computers in combination with certain smart ways
of reducing the computational complexity, the method looks
promising.

There exists a lot of work on analyzing large datasets in
the field of Data Mining. However, data mining techniques
tend to be not well suited for (semi-)autonomous software
intensive hardware systems, or at least require considerable
refitting. It is mainly due to the typical use cases of data
mining (business intelligence, analysis of data from scien-
tific experiments, etc.) where requirements and allowances
differ from embodied software systems – generally a huge
data store is available together with excessive computational
power and no strict time limits on arriving the results. The
most relevant data mining work (with regards to this paper)
is probably done on the border between data mining and
signal processing where the restrictions on computing time
and storage force researchers to invent efficient stream pro-
cessing algorithms that, for example, dynamically maintain
histograms while looking at each incoming datapoint only
once and then discarding it (e.g. [1]). A brief review of data
stream mining can be found in [2]. The approach in [7],
analogously to my work, takes minimal human intervention
in sensor stream analysis as a requirement, but their focus
is on finding periodic components in individual streams.
A system that is able to monitor a large number of data
streams in real-time is described in [10]. However, only
general statistics (including correlation) is extracted there,
not the more detailed relationships as in current work. An
approach that uses information from multiple streams in
order to estimate missing datapoints is proposed in [9], but
their goal is mainly to use that info to enhance estimation
of relatively regular and complete time series (where data
points are produced at every time step), while in my work
there is no restriction for the streams to be interpreted as
evolving time series.

System identification and regression analysis achieve quite
good results in finding and specifying how system variables
relate to each other, but they typically work by trying to
fit some predefined model from a limited existing set with
observed data. The models available to the identifyer can
place considerable limits on what kind of system models
can be generated. Artificial neural networks do a good job
in nonlinear regression, but their disadvantage is opaqueness
– it is difficult for a human observer to quickly understand
what a given neural network has learned by looking at the
internals of that network.

Continuous case-based reasoning [8] and interaction his-
tory architecture [5], [4] save a limited number of interesting
(as defined by the task of the system) experiences which
are typically full recordings over some time period of all
data streams, and in case of a reocurring situation retrieve
a matching case from the memory and try to repeat it.
While both are making use of historical sensor data analysis
for system control, they generally do so for the full set of
data streams instead of trying to identify the most relevant
variables and their relations and using only those for re-
achieving the expected result.

In [6] it is reported that information distance (also known
as Crutchfield-Rényi Information Metric) is a very good
metric for measuring the relatedness of sensory streams
to each other, outperforming other measures like 1-norm
distance, the correlation coefficient, Kullback-Leibler diver-
gence, Hellinger distance, and the Jensen-Shannon diver-
gence. However, the metric only provides information about
the strength of relation, not about what the relation itself
looks like, and is thus somewhat difficult to use for deriving
control rules from the experience, at least with single variable
precision (as opposed to whole experience repetition for
which it is used in interaction history architecture [5], [4]).

More abstract (typically logic-based) methods, while often
easier to follow by a human observer, tend to have a problem
with symbol grounding – connecting the internal symbols
with external objects and phenomena they refer to – as it
is not trivial to derive usable symbolic representations from
incoming data streams and later apply the symbolic results
to controlling the actuators in a sensible way.

C. Detailed Description

1) The Data Structure: Probably the simplest way to
visualize a set of datapoints of two variables is to draw
a scatterplot. As can be seen on Fig. 1 it is quite easy
for a human to see if plotted variables are independent or
related, and this visual analysis could be automatized as well.
However, in computers scatterplots require a lot of memory
for storing the datapoints, and a lot of computing power to
analyze the plot due to the necessity of taking each point
into account (drawing all the points on screen is also time
consuming, but given our intent to automate the analysis and
to leave the human out of the loop for most of the time, it
is not particularly relevant at the moment). And even in case
of human visual inspection a scatterplot can become difficult
to read in case of large datasets.

0,4

0,6

0,8

1

0

0,2

0,4

0 0,2 0,4 0,6 0,8 1

(a) Scatterplot of a dataset with two independent variables.

0,3

0,4

0,5

0,6

0,7

0,8

0

0,1

0,2

0,3

0 0,2 0,4 0,6 0,8 1

(b) Scatterplot of a dataset with two related variables.

0,4

0,6

0,8

1

0

0,2

0,4

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

(c) Bar chart with error bars based on the same data as (a)

0,3

0,4

0,5

0,6

0,7

0

0,1

0,2

0,3

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

(d) Bar chart with error bars based on the same data as (b)

Fig. 1. The visual indicators of variable independence are the lack of difference along x axis of the y value distribution, and also the existence of different
y values for one x value (though the latter is not always required: if both the mean and dispersion of y are constant everywhere, then y is also highly
unlikely to depend on x). Note: these are purely illustrative charts, not generated with the described learning system.

The next simple option is a bar chart where the x-axis is
divided into bins (ranges) and the height of each bar reflects
the average value of y variable in the corresponding range
of x variable. This could also be called a piecewise constant
approximation of the relation. However, conversion from
scatterplot to bar chart is lossy, as it is not possible to visually
differentiate between a bar consisting of many identical y
values and a bar consisting of randomly distributed y values
with the same mean value. Thus it is useful to also add error
bars to the graph, which restores our ability to assess the
strength of the relationship (Fig. 1). Loss of information due
to the binning of x remains, but is adjustable by bin width,
and is generally acceptable for most applications.

Storing and analyzing a bar chart is a lot less expensive:
there is only one y value plus error bar size per bin, and a
fairly limited number of bins. Also, in case of equal-width
bins only the total number of bins and the minimum and
maximum value of the x variable is sufficient knowledge
on the x axis, as opposed to remembering each datapoint
separately. But given our interest in online stream processing
there is a need for frequent updating of the charts, which
can also include relocation of bin boundaries when a new
historically maximal or minimal x value arrives (as we may
not initially know the possible ranges of variables). And
to fully regenerate a bar chart and its error bars, it is still
necessary to have all the datapoints available, and to time
consumingly reprocess them.

Luckily, with the cost of some further loss of information,
it is possible to instead use a one pass bar charting algorithm
that needs to see each data point only once and is still able to

update itself as new data arrives. It might well be possible to
develop a lot better single pass bar charting algorithms, but
for a start the following one that I came up with (and that
was partly inspired by the various streaming algorithms for
histogram creation in the field of data stream mining) should
be sufficient:

• Start with a zero width chart with a fixed number of
zero width bins, each containing data about the number
of datapoints in that bin (n), the arithmetic mean of y
value of seen datapoints (mean), previous incoming y
value (prevY), and the average absolute difference of y
value from previous y value (avgAbsDif) (all initially
zero). The latter is a kind of error indicator that is very
easily calculable in the one pass mode, as opposed to
the common dispersion measures (standard deviation,
average absolute deviation, etc.) that are dependent on
the mean value of y and can thus be a bit troublesome,
though not necessarily impossible, to update without
having all the datapoints available [3]. On the other
hand, using more common dispersion measures might
allow for better analysis in some applications, so it is
up to the system designer to choose the best one.

• The first incoming datapoint defines the current location
of bins (that still have zero width).

• If a new incoming datapoint (x, y) falls into some
existing bin, then increase the datapoint count n in that
bin by one, update mean using

mean =
mean · (n− 1) + y

n
, (1)

update the average absolute difference of y value from
previous y value using

avgAbsDif = {avgAbsDif · (n− 2)+

+ abs(y − prevY)} · 1
n− 1

(2)

and finally assign prevY = y.
• If a new incoming datapoint falls outside the currently

used x range, then create a new chart that has the x
range extended up (down) to the new x value, and all
bins widened accordingly. Go through all bins of the
old chart and transfer the data to the corresponding
bins of new chart. If an old bin fully falls into the
range of a new bin and the new bin is empty, all
data (n, mean, prevY, avgAbsDif) is transfered to the
new bin, but if the old bin is partly overlapping with
one new bin and partly with another, then assume
uniform datapoint distribution along x-axis and split
the data from old bin to new bins proportionally with
the overlaps (also assume uniform y value distribution
along x-axis and thus the data to be put into new bin
is (proportion · n, mean, prevY, avgAbsDif), where
proportion is the proportion of the old bin that overlaps
with the new bin). As new bins are wider than old ones,
data from several (parts of) old bins often has to be put
to the same new bin. This can be done using

meanInNew = (nInNew ·meanInNew+
+ nFromOld · proportion ·meanFromOld)·

· 1
nInNew + nFromOld · proportion

(3)

The value of previous incoming y, i.e., prevY , can be
carried over without change (as it is not possible to
determine anyway which of the bins has the most recent
datapoint). The average absolute difference of y value
from previous y value is updated as follows:

avgAbsDifInNew =
(nInNew · avgAbsDifInNew+
+nFromOld · proportion · avgAbsDifFromOld)·

· 1
nInNew + nFromOld · proportion

(4)

Then the datapoint count is updated:

nInNew = nInNew+
+ nFromOld · proportion (5)

Finally, the new datapoint itself is added to the new
chart as described in previous point.

The described algorithm also allows for easy implemen-
tation of gradual forgetting of old data points as new ones
arrive. Namely, it can be done by just putting a cap on the
datapoint counter of each bin, that is, if n reaches some
maximal allowed value it will not be increased anymore.
This will give each new incoming datapoint a slightly higher

weight (compared to the datapoints already accounted for)
than it would have normally had, and thus weighs down older
values.

The algorithm surely introduces some extra loss of infor-
mation and inaccuracies in the adaptive widening process of
x range, but as the widening procedure typically becomes less
and less frequent during the operation of the learning system,
the accumulating new data reduces the introduced error. If
forgetting mechanism is implemented, the somewhat incor-
rect values will also be gradually forgotten and finally a fully
up to date and accurate-within-possible-limits information is
present in the data structure.

The algorithm is also easily generalizable to more than two
dimensions – a necessary feature if we need to detect relation
functions of more than one variable. In higher dimensions
there will still be only one potentially dependent variable,
and all the other variables / axes are treated as the x-variable
/ -axis in the preceding algorithm.

The big concern for computational power expressed in
previous paragraphs is due to the fact that we will need
a very large number of charts – in case of a brute force
approach where all possible charts are generated the total
number would be:

numOfPossibleBarCharts = n
n−1∑
k=1

(n−1)Ck =

= n
n−1∑
k=1

(n− 1)!
k!(n− 1− k)!

(6)

where n is the total number of data streams (variables).
The first n in the equation comes from the fact that we
need to have each variable to separately appear as the
potentially dependent variable (i.e., on the y axis in case of
two-dimensional charts). And per each potentially dependent
variable we need all the possible combinations of other
variables by 1, by 2, etc., on the other axis / axes, thus the
sum of combinations in the expression. Note that the total
number of possible bar charts is somewhat larger than the
total number of possible scatterplots because bar charts do
not treat all axes as equal (most are severely discretized, one
is not) and therefore having, e.g., variable v on x axis and
variable w on y axis yields a principally different 2D bar
chart than having variable v on y axis and variable w on x
axis (while for scatterplots it would yield the same plot, just
diagonally flipped).

Given the approach described later where delayed effects
are discovered by using time windows on each real data
stream to produce additional streams, the number of in-
system data streams is considerably larger than the “real”
ones. For example, 10 real sensors, 5 controls and 10
timeslots would result in 150 data streams, and the number
of possible charts would be a whopping 1047 (with the
additional problem that each new dimension of a chart
exponentially increases required memory and computing
power). Luckily, in most applications it is not necessary
to consider all the possible combinations, and with some

clever thinking it should be possible to already implement
interesting systems with todays off-the-shelf hardware.

2) Data Preprocessing: In order to be able to detect
delayed effects between variables, it is necessary to chart
the relations between current and earlier values of those
variables. This can be implemented by keeping recent data
points in a buffer and applying time windows to this recent
history of each data stream, averaging the contents of each
window, and taking the current value of each such window
as a new variable. Finding out the appropriate size and
number of time windows is not trivial, because increasing
their number can produce explosive increase in the number
of charts, increasing their size and number requires longer
buffers, increasing their size means less accurate data due
to averaging, but reducing their number and size would also
reduce the ability to detect delayed effects between variables.

As already noted, charting all possible combinations of
all data streams would not be practically feasible. Thus it is
necessary to consider which combinations to use. Although
most possibilities for economizing depend on the specific
application (e.g., on the ways we are going to use extracted
data, on the configuration of the hardware, etc.), there are
also several more general heuristics that provide considerable
savings. For example, as it is not possible to affect the
past, there is no need to look at combinations where some
of the argument (“x-axis”) variables are newer than the
potentially dependent variable. Also, as the rules for control
value generation are usually known (generated by the system
itself or given by the human designer), it is not necessary
for the learning system to plot the dependencies of control
values on other variables (except maybe in very complex
systems). Yet another helpful thing to note is that small time
shifting generally does not change relationships much, thus
it would be redundant to separately consider the relationship
between, say, var1,t and var2,t on one chart, and var1,t−1

and var2,t−1 on another chart.
3) Extracting Useful Information from Bar Charts: As-

suming that bin widths are appropriate (i.e., do not cause too
big information loss due to averaging), it is quite straight-
forward to assess the strength of relationship in the limits
of each bin and on the chart in general, if necessary (by
looking at the y value mean and dispersion fluctuations along
x-axis, as already described on Fig. 1). After determining the
reliability of the bin or chart, getting the specific relationship
information is even more straightforward – just reading from
the chart that “given such and such values of arguments, the
dependent variable has on average this value”. That does not
give any general mathematical model of the relationship, but
is in many applications sufficient anyway.

The exact usage of the accumulated bar charts depends on
the type of application. For example if we are dealing with
controlling an embodied system, it would be a good idea
to extract control rules from the charts periodically instead
of doing full time-consuming analysis on each control loop
iteration. To generate the rules automatically, it is typically
necessary to have some reward / reinforcement signal in

the system, and to look at how the value of this signal
depends on other variables. The control rules would likely
include information about what control values to apply or
avoid given the current or recent sensor readings and values
of other controls. In addition, the rules can include the
reliability information of the relationship that would affect,
for example, the probability of applying given rule. Such
control rules would also be well understandable for a human,
and thus it would be easy to modify, remove, and add the
rules by hand if necessary. The specifics of rule generation
and usage can be quite intricate and discussing them is out
of the scope of current paper.

III. EXPERIMENTS

The work on the presented idea is ongoing and started
only recently, thus it not possible yet to provide thorough
examples of its usage. Therefore, only a brief description of
preliminary tests is given here. These examples cannot be
taken as a proper experimental proof of the concept. Also,
it is most certainly possible to get better results with this
learning system on the same test cases after further research
has improved the idea. No tests have been conducted yet on
real embodied systems – all the following are purely virtual.

A. XOR

Test Case: learning the equivalent of binary exclusive or.
Setup: There is one variable controllable by the learning

system that can have the value of 0 or 1. The total number of
sensors is 3, two of them have random independent values
of either 0 or 1, and one is reinforcement signal that is 1
when both other sensors have same value and control is 1,
or both other sensors have opposite values and control is 0.
Otherwise, reinforcement signal is -1.

The number of time windows is 4, the width being 1 time
step. The number of bins on each argument axis of each chart
is 4. On charts, only reinforcement signal is considered to
be a potential dependent variable, and argument variables
are: in two dimensions, all controls one by one (i.e., the
current and past 3 values of the control); in three dimensions
combinations by two of all controls, and combinations by two
of controls and sensors where control value is more recent; in
four dimensions combinations by three of controls with one
control value per combination and sensors not being more
recent than control value. Many charts are clearly redundant
for the task, but that is expected in creating a non-application-
specific learning system – it must decide itself which are
important. Avoidance rules are generated after every 100 time
steps.

Results: After the first rule generation, no more mistakes
are made: control always equals sensor0XORsensor1. The
generated avoidance rules have the following form: [[’S’,
2, 0], -1.0, [’C’, 0, 0.0, 0.25], [[’S’, 0, 0, 0.0, 0.25], [’S’,
1, 0, 0.0, 0.25]], which says that if the most recent values
of sensors S0 and S1 are between 0 and 0.25, then avoid
assigning values between 0 and 0.25 to the control variable.
Range is 0 to 0.25 due to the fact that we have 4 bins and
the total range of variable values is 1.

B. Crash Avoidance

Test Case: learning to not crash into walls in a rectangular
room.

Setup: A virtual creature is in a room of 9x9 units and
can move around in discrete steps. The number of controls is
2: one causes the creature to step forward one unit if turned
on, and the other one to turn either left (value -1), not to turn
(0) or turn right (1). Only one of the controls is allowed to
be active at each time step (i.e., only step or only turn). The
number of sensors is 4: three of them tell whether there is a
wall (1) or not (0) correspondingly on the left, in front of, or
on the right of the creature; the fourth sensor is reinforcement
signal that is -1 if creature tried to step into a wall, and 0
otherwise.

The number of time windows is 10, the width being 1
time step. The number of bins on each argument axis of
each chart is 5. The variable combinations being charted are
similar to those described in XOR test, with the addition to
four dimensions the combinations by three of two controls
and one sensor (the latter not being more recent than the
oldest control variable), and the combinations by three of
two controls and one sensor where the sensor variable is
timewise between the two controls.

The creature wanders around randomly. Avoidance rules
are generated after every 100 time steps.

Results: After the first rule generation, no more crashes
occur. An example of resulting avoidance rules is: [[’S’, 3,
0], -1.0, [’C’, 0, 0.80000000000000004, 1.0], [[’S’, 0, 0,
0.80000000000000004, 1.0]], which says that if the most
recent value of sensor S0 is between 0.8 and 1, then avoid
control C0 between 0.8 and 1, and it means that if there is a
wall ahead, do not step forward (this meaning is obviously
only assigned by the human observer, not something the
virtual system would understand).

C. Keeping Close to a Light Source

Test Case: learning to go towards a virtual light source.
Setup: A virtual creature is in a room of 19x19 units and

can move around in discrete steps. The number of controls
is 1: the creature will make one step to North if the control
is 0, to East if 1, to South if 2, to West if 3. The number of
sensors is 6: four of them indicate the presence of a wall in
the corresponding direction (North, East, South, West), one
gives the angle in radians towards light source relative to the
x-axis originating from the creature (atan2(posOfLightY −
posOfCreatY, posOfLightX−posOfCreatX)), and one
is a reinforcement signal that is 1 if the distance from creature
to light decreased, -1 if increased, and 0 if remained the same.

The number of time windows is 3, the width being 1 time
step. The number of bins on each argument axis of each chart
is 15. On charts, only reinforcement signal is considered to be
a potential dependent variable, and argument variables are: in
two dimensions, all controls one by one; in three dimensions
combinations by two of all controls, and combinations by two
of controls and sensors where control value is more recent.
Avoidance rules are generated after every 100 time steps, and

are executed probabilistically to allow for some exploration
even after rules have been generated: with probability 0.7 the
avoidance rules are followed, otherwise the random control
value is applied without appropriateness check.

Results: if the light source is put into a corner of the
room, then after the first rule generation the creature will
efficiently move to that corner. However, if the light source is
in the middle of the room, the current system has difficulties
learning to keep to its vicinity. The reason is likely to lie
either in unsuitable parameters of the learning system or in
the primitivity of rule following system, and fixing it will
require some further analysis (which is not undertaken yet
due to the project being in the initial stage).

IV. FUTURE WORK

This paper is mainly only a conceptual overview of the
idea. Considerable further work is needed before it can be
successfully applied on interesting and / or serious problems.
The topics needing further research include:
• How to generate bar charts computationally more effi-

ciently.
• How to select the combinations of variables to look

at, and how to automate that selection (e.g., if no
relationship is detected between some variables, then
given chart might be removed from the learning system,
either permanently or for some period).

• How to select the number and size of time windows in
data preprocessing.

• How to analyze the charts computationally more effi-
ciently.

• How to extract only the most important information
from the large number of charts, so as to avoid infor-
mation overload in the control system.

• How to generate the rule set so as to cover enough
various situations the controllable system might find
itself from, not only the rules for worst or best cases
as the naive “let’s look only at situations with highest
and lowest reinforcement values” approach might do.

• Which procedures to use for applying the found rules
so as to make use of the gathered information most
efficiently.

• How to balance exploration and exploitation, i.e., how
much and which kind (random, systematic) exploratory
action is needed for the bar charts to accumulate diverse
enough data for the system to behave well, as opposed
to settling down quickly to potentially far-from-best
control rules.

• How to adaptively change various parameters during
system’s work (e.g., varying the width of individual
chart bins so as to represent more important regions
on the axis more accurately).

• How to parallelize the system in order to have more
computing power available for stream analysis and rule
generation (it seems that the system is inherently quite
decomposable – operations on one chart generally do
not interfere with operations on other charts; also,

given some initial knowledge about the sensors it might
be possible to group similar sensors to modules, add
complexity-reducing pre- and intermediate processing,
introduce hierarchical organization of data flows, etc.).
This is likely to be very important for all practical
applications except the simplest toy problems, as the
amount of required computing power tends to increase
explosively with the addition of sensors, actuators, and
time windows on memory buffers.

• A proper analysis of what the method can and cannot
do.

• A proper comparison with other machine learning meth-
ods, including on the basis of theoretical capabilities,
computational cost, and suitability for various applica-
tions.

V. CONCLUSION

The machine learning method inspired by human behavior
during data analysis can potentially produce good results,
especially in software-intensive embodied systems, and at
the same time the internals of this learning system are
easily understandable to a human observer at all stages,
which makes it easier to actively intervene with system
operation as necessary, to transfer the learned knowledge to
other systems, and to develop new more complex approaches
based on this method. Although the method in its most
primitive form does not scale to cope with problems of
any practical interest due to the extremely sharp growth of
computational requirements, it nevertheless looks promising
because of its potential parallelizability, the possibilities for
smart optimizations, and the fast growth of capabilities of
computer technology.

VI. ACKNOWLEDGEMENT

Thanks to Leo Mõtus for providing me the possibility
to do highly unconstrained research. Thanks to the three
anonymous reviewers for reading the first version of this
paper and providing constructive criticism.

REFERENCES

[1] C. Buragohain, N. Shrivastava, S. Suri, Space efficient streaming
algorithms for the maximum error histogram, in: Data Engineering,
2007. ICDE 2007. IEEE 23rd International Conference on, 2007.

[2] M. M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: A
review, SIGMOD Rec. 34 (2) (2005) 18–26.

[3] M. Hoemmen, Computing the standard deviation efficiently,
http://www.cs.berkeley.edu/˜mhoemmen/cs194/
Tutorials/variance.pdf (2007).

[4] N. A. Mirza, Grounded sensorimotor interaction histories for ontoge-
netic development in robots, Ph.D. thesis, University of Hertfordshire
(2008).

[5] N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, R. te Boekhorst, Grounded
sensorimotor interaction histories in an information theoretic metric
space for robot ontogeny, Adaptive Behavior 15 (2) (2007) 167–187.

[6] L. Olsson, C. L. Nehaniv, D. Polani, Measuring informational distances
between sensors and sensor integration, in: Artificial Life X, 2006.

[7] S. Papadimitriou, A. Brockwell, C. Faloutsos, Adaptive, hands-off
stream mining, in: VLDB ’2003: Proceedings of the 29th International
Conference on Very Large Data Bases, VLDB Endowment, 2003.

[8] A. Ram, J. C. Santamaria, Continuous case-based reasoning, Artificial
Intelligence 1-2 (1997) 25–77.

[9] B.-K. Yi, N. D. Sidiropoulos, T. Johnson, A. Biliris, H. V. Jagadish,
C. Faloutsos, Online data mining for co-evolving time sequences, Data
Engineering, International Conference on (2000) 13.

[10] Y. Zhu, D. Shasha, Statstream: Statistical monitoring of thousands of
data streams in real time, in: VLDB ’02: Proceedings of the 28th In-
ternational Conference on Very Large Data Bases, VLDB Endowment,
2002.

