
Lints, T. (2011). Adaptation, and robust flexible reflexive bytecode. In Info- ja

kommunikatsioonitehnoloogia doktorikooli IKTDK viienda aastakonverentsi artiklite

kogumik: 25.-26. novembril 2011, Nelijärve.

T. Lints, "Adaptation, and robust flexible reflexive bytecode," in Info- ja

kommunikatsioonitehnoloogia doktorikooli IKTDK viienda aastakonverentsi artiklite

kogumik: 25.-26. novembril 2011, Nelijärve, 2011.

@inproceedings{Lints11_AdAndBytecode,
 author = {Taivo Lints},
 title = {Adaptation, and Robust Flexible Reflexive Bytecode},
 year = {2011},
 booktitle = {Info- ja kommunikatsioonitehnoloogia doktorikooli
IKTDK viienda aastakonverentsi artiklite kogumik: 25.-26.
novembril 2011, Nelij\"{a}rve}
}

Adaptation, and Robust Flexible Reflexive Bytecode
Taivo Lints

Research Laboratory for Proactive Technologies
Department of Computer Control
Tallinn University of Technology

taivo@taivo.net

Abstract— This short report gives an overview of my cur-
rent research in progress about adaptation and adaptivity. It
provides an update to my working definition of adaptation,
and very briefly describes a fresh idea of a possible program
code representation that might be good for certain software
implementations of adaptive systems, particularly, but not
limited to, in genetic programming.

I. MOTIVATION

The concept of adaptation has a considerable importance in
many areas of research (as well as daily life), including in
Artificial Life and Artificial Intelligence, which are among
my key research interests. But although adaptation is a
widespread and frequently used concept, there still seems
to be a lack of good interdisciplinary, yet thorough, well-
systematized overviews of adaption in different kinds of
systems and of underlying processes of adaptation in specific
cases and in general, and even the very definition of adap-
tation, if given at all, is typically either too informal or too
discipline-specific. Therefore, in order to move towards more
sophisticated ALife and AI systems, I have been initially
focusing on trying to better understand adaptation and adap-
tivity by exploring and refining the definitions and looking
at some properties and processes that support adaptivity.

II. DEFINING ADAPTATION

An overview and discussion on the diversity of definitions
of adaptation, together with the first steps on distilling from
them the conceptual essence, is available in my published
papers (see taivo.net) as well as unpublished work (available
at request).

In general, adaptation as a process is apparently about
changing something (itself, others, the environment) so that
it would be more suitable or fit for some purpose (or, to avoid
the teleological terms, would just be rated higher by some
fitness function) than it would have otherwise been. This
includes reacting to disturbances by lessening their negative
impact and, if possible, by restoring the pre-perturbation
fitness levels, as well as improving the system and / or
situation in an otherwise stable environment. More precisely,
we can consider defining adaptation in the following way:

Given a time period and a fitness function or
goal, we can say that (the process of) adaptation
occurred in a system within this time period and
with regard to that fitness function or goal, if within
this time period there was a (set of) change(s)
in this system (possibly, but not necessarily, also

propagating outside the system) that made the
system more fit with regard to the given fitness
function or goal within this time period than it
would have been without that (set of) change(s) (all
else being equal, except those additional changes
inside and outside the system that were triggered
by this (set of) change(s)).

Assuming a probabilistic world it might at first seem to
be necessary to complement the explicit causality of “were
triggered” with the more indirect “or made more probable”,
i.e., “except those additional changes inside and outside
the system that were triggered or made more probable by
this (set of) change(s)”. However, to really be sure that
the positive effect on fitness was due to that particular (set
of) change(s), we cannot allow for unknown probabilistic
changes outside that set – all else being equal must also cover
the results of all probabilistic / random choices in the system
and in the environment that are not unavoidably altered by
the specified (set of) change(s). Even if that specific (set
of) change(s) alters some probability distribution into what
might cause worse functioning in the long run, it does not
matter if that worsening does not occur within the time period
we are looking at, because the concept of adaptation deals
strictly with a specific time frame. Even if we know that the
potential worsening will actually manifest somewhen later,
then as long as it is outside the specified time frame, it
does not influence the fact of adaptation occurring within
that time frame. Or, alternatively, if we really want it to
influence, we must explicitly extend that time frame to
include that later event and observe it to occur. Or, possibly,
in some practical cases, to make an explicit relaxation of
certainty and say how confident we are in our estimations
of the worsening occurring and within which conditions
our estimation is reliable and so on, but that is already
a weakening of the definition for practical purposes, and
forcing such relaxations to be made explicit is exactly what
I prefer the theoretical definition to do. What the potentially
detrimental alterations of probability distributions do affect,
however, is the adaptivity of the system, but that is a concept
distinct from (although surely related to) adaptation and is
scheduled for analysis in my later research.

As of the “(set of) change(s) in this system (possibly,
but not necessarily, also propagating outside the system)” –
we can only say that adaptation occured in the system if at
least some of those changes also occured within that system.

We, surely, also want to allow for cases where the positive
influence on fitness is achieved by the system modifying its
environment instead of itself, but this is, actually, already
included – for the system to create some change in its
environment that would have otherwise not happened, some
change must have first occurred within the system that then
led to the change in the environment. Yes, the system can
also create changes in its surroundings by just being there,
without changing anything inside itself, but those are a
conceptually different type of changes – just a change of
the environment in time, as opposed to a change compared
to what would have happened otherwise, without a change
within the system, which is what we need, if we want to say
that adaptation occurred in the system.

Now, this new definition I proposed may seem quite
satisfactory at first, but it has a potential deep conceptual
problem – it does not require any influence from the fitness
function towards the change. For example, it would say that
the process of adaptation occurred in the following case:

There is a robot that once in an hour changes
totally randomly the orientation of its solar panel,
and it keeps doing so regardless of what results
these changes cause. The fitness function is taken
to be a function that depends on the power output
of the solar panel: the higher the output, the higher
the score. And it just so happened that within
the one-hour time period of interest the absolutely
random reorientation of the panel resulted in a very
favorable position that produces high ouput.

Initially I considered this to indeed be an edge case of
adaptation, because I looked at the issue from a practical
viewpoint – in real life it can sometimes be impossible
to find out if there actually was any influence from the
fitness function towards the change or not. However, it seems
that calling this purely accidentally favorable reorientation a
process of adaptation feels wrong to most people – either the
triggering or at least the retainment of the change should,
intuitively, have at least something to do with the potential
that fitness increase results from this change.

I have already dismissed the direct practicality argument
for the definitions I propose and instead strive for definitions
that capture the concept itself as precisely as possible,
leaving the application issues for later analysis and forcing
all relaxations for practical purposes to be made explicit.
Therefore, to resolve the described conceptual problem, we
can update the definition of adaptation with an additional
clause that requires some influence from the fitness function
towards the change:

Given a time period and a fitness function or a
goal, we can say that (the process of) adaptation
occurred in a system within this time period and
with regard to that fitness function or goal, if within
this time period there was a (set of) change(s)
in this system (possibly, but not necessarily, also
propagating outside the system) that made the
system more fit with regard to the given fitness

function or goal within this time period than it
would have been without that (set of) change(s) (all
else being equal, except those additional changes
inside and outside the system that were triggered
by this (set of) change(s)), and the probability of
that (set of) change(s) occurring was increased by
at least some factor(s) that were at least partly
correlated with that increase in fitness.

Now, at first a counterexample against such influence might
come to mind from one of the foundational examples of
adaptation – natural evolution. Namely, the mutations are
generally considered to be strictly NOT teleological: they just
“happen” and are only later, possibly, selected for or against.
But at a closer look it becomes apparent (as is probably
fully obvious for most evolutionary biologists) that actually
the process of adaptation is not the mutations as such, but
rather the whole variation-selection loop, and the selection is
already directly tied to the fitness function (or even the very
defining process of it, because in natural selection the fitness
function is not explicitly formulated anywhere in the system,
but rather is a description of a statistical tendency [1]).
So, according to the definition that requires fitness related
influence on the change, what would account as a change in
the context of that definition within a natural evolutionary
system is, typically, the (active) retainment or spreading of
a variation. Though there can be exceptions, too – if the
mutation rate was increased due to low fitness then some
influence is already present during the mutation.

Such an approach can, admittedly, make the analysis a lot
more complicated. For example, in some sense, the typical
mutation rate is also likely to have been evolved, over
time, to provide a positive influence on the fitness of the
species (rather than, say, driving the species extinct through
mutational meltdown), and thus there probably still is some
fitness-correlated factor already present in any occurrence of
a mutation. But at least we are then forced to make all such
factors explicit, which contributes a lot to our awareness of
the adaptational processes happening in the given system.

The definition most certainly requires further analysis and
refining, for example the notion of change needs to be
specified. Additionally, it might be very useful to describe
ways to also provide a formal quantifiable definition of
adaptation, as well as of adaptivity. These are among the
next steps of my research.

III. ROBUST FLEXIBLE REFLEXIVE BYTECODE

Now, not directly stemming from the definition above, but
highly relevant to creating adaptive software systems never-
theless, is a recent idea of mine that I describe very briefly
in the following, with the hope of getting some feedback
and constructive criticism both about how novel and how
sensible it seems.

A. Motivation
Various processes of adaptation, especially evolution, have
been explored and exploited in the world of software for
decades – most notably in optimization and in Artificial

Life and Artificial Intelligence. I am particularly inspired
by the ALife effort to create artificial ecosystems that, if
left running for long enough, start exhibiting wonderfully
complex behaviors (and, as a side effect, provide us with
unconventional methods of optimization, generative art, au-
tomatic code generation and so forth).

There are, however, several problems associated with such
systems. Firstly, they are typically built to simulate the world
in a way that makes it easy for humans to detect interesting
behaviors (which is good), but, on the flip side, is very
computationally expensive to run (simulations of physics and
such). This makes it difficult or even infeasible to get very
high levels of complexity to emerge, because it would take
too much time. Secondly, there is a widespread suspicion that
most of the rule sets used to construct these systems may lack
sufficient support for open-ended development – that even if
provided with sufficient computational resources, the growth
of interesting complexity in the systems flattens out way
before we would like it to, thus producing less interesting
systems than might be possible in principle.

So it would be desirable to try building some artificial
worlds in ways that are “native” to the computers: concep-
tually centered on building blocks that are the fastest for
computers to deal with – bits and bytes and such – instead
of imitations of the outside world (e.g., laws of physics are
unnatural in the software world). And, along the way, to
try to design the underlying rules to be more supportive of
multilevel emergence and of sustained growth of complexity.
Robust flexible reflexive bytecode is one of the ideas that
occurred to me when looking for solutions that satisfy the
aforementioned goals.

B. A Simple Example
The quickest way to convey the basics of the idea is via a
simple example. It is just an illustration of the basics and
does not exhibit the full range and depth of possibilities.

The program resides in a memory space as a string (or
array) of characters (bytes, values), for example:

BBABCCCCCAADABBBC
The memory space is warped (circular), so that going “off”
one end will move you unnoticeably to the other end. For
example when you keep moving to the right, you will
endlessly loop over and over the string from left to right.

The system loops over the string and “executes” each
character, i.e., the system looks up from a dictionary of some
kind if the given character at execution point refers to some
executable code: if yes, then executes the code, otherwise
just moves on to the next character.

The operations that the characters refer to can be very
simple (e.g. “copy myself to the neighboring location on
my right) as well as however complex (whole programs).
This correspondence between characters (operation codes)
and actual instructions is what makes it bytecode.

The operations can, among other things, read from and
write to string locations, and the addressing of these locations
is relative, for example “current position + 5”. This relativity
together with warping guarantees that all addresses are valid,

which is crucial for easy mutability of the code. How the
operations interpret and use the data they read is up to them.

Another part of the ease of mutability comes from the
aforementioned approach that each character either refers
to executable code or is ignored by the execution system.
Thus, changing the characters will again produce valid code,
except only if the instructions referred to by the characters
are somehow dependent on when they are called. If the
system designer wants to maximize the robustness of the
system, it is necessary only to make sure that these building
blocks (pieces of executable code) work well in various
circumstances. The mutation mechanisms work with these
blocks, not within them. The flip side of the latter is,
admittedly, that the set of building blocks is not expanding,
but there are also ways to solve this by providing mechanisms
of encapsulation, as briefly explained later, so that while
elementary blocks indeed remain unmutable, it is possible
to aggregate them into new larger blocks. In principle it is,
of course, possible to allow even the elementary blocks to
be mutated, it just will make maintaining the executability,
or finding executable blocks from amidst the invalid ones,
more difficult.

It is worth noting that the mentioned mutation mecha-
nisms are first and foremost the self-changes of the memory
space by the operations themselves. Adding evolutionary
algorithms on top of that system will most probably be a
good idea, but in principle it is optional, not inherent.

To get something interesting out of the system, it is
generally necessary to let it run for a while and see (possibly
check automatically) what happens. If nothing particularly
interesting occurs, then changing the initial conditions, the
building blocks, and so forth, are the options to turn to, either
via evolutionary algorithms or otherwise.

C. Further Elaboration
While the previous section portrayed a simple implemen-
tation of the idea, there are many possibilities to make
the system more complex and more potent. Most of the
described mechanisms and approaches are easily changeable,
for example the way the instruction pointer(s) move (looping
or randomly or also guided by the code itself), how the string
is updated (immediately or buffered), what the code does
(operations may, in principle, do anything the programmer
wants to, including read from and write to other locations
like screen, disk, etc.), the bytecode representation (does not
have to be bytes / chars, can be longer or shorter), ways
of doing I/O (if necessary), initial conditions, whether the
behaviors are deterministic or probabilistic, and more.

As of automatic encapsulation of pieces of bytecode into
a single new building block in order to make it easier to
reach higher levels of abstraction and complexity, in principle
it may in some cases even emerge by itself, without the
system designer having to put it in explicitly. But if this
does not happen, there are ways to engineer it in, too. For
example the underlying system (i.e., not the bytecode itself,
but the implementation) can be made to search for regions of
bytecode where interactions (reads, writes) within the region

are more intense than between the region and the rest of
memory space, and to “push” such regions to “another level”,
so that in the original space they would each occupy only
one memory location. If that location gets executed, then
the whole pushed-out region gets executed. For how the
operations that try to do something with that location will
see it, there are several possibilities. Some operations may
be allowed to see it as just a single location, and to, say,
overwrite it with something else or copy the whole region
to another location, whereas some other operations can be
made to see the memory space so that all the pushed-out
regions are flattened and all locations within those regions
addressable as usual.

D. Related Work
I am currently not aware of anybody having already proposed
such robust flexible reflexive bytecode, but many of the ideas
underlying it are surely not novel. Traditional bytecode is
used widely. Self-modifying memory space with circular
addressing, created for developing artificial ecosystems, is
also present in various systems like Core War [2], Tierra [3]

and Avida [4]. However, common bytecode is not (as) robust,
flexible and reflexive, and systems like Core War, Tierra and
Avida are based on simple register machine instruction sets
and do not allow for advanced building blocks. If, however,
you are aware of any ideas similar to the described robust
flexible reflexive bytecode, then I would be very glad to hear
about them!

IV. ACKNOWLEDGMENTS
Thanks to Leo Mõtus for providing me the possibility to do

highly unconstrained research. This work has been supported
in part by Research Laboratory for Proactive Technologies
and Department of Computer Control in Tallinn University
of Technology, Estonian Doctoral School in ICT, and grants
SF0140113As08 and GART5.

REFERENCES

[1] “Survival of the fittest is a tautology,”
http://evolutionwiki.org/wiki/Survival of the fittest is a tautology.

[2] “Corewar - the ultimate programming game,” http://corewar.co.uk/.
[3] “Tierra home page,” http://life.ou.edu/tierra/.
[4] “Avida, digital life platform,” http://avida.devosoft.org/.

